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The azaphilones are a structurally diverse family of natural O,
products containing a highly oxygenated bicyclic core and chiral HO 6 (CH,)6CHs ©o0.6 (CHCHs
guaternary center (c6-151834! 1, Figure 1). We recently reported 5—“-> B transfer ~ 0®  — am
the synthesis off)-1 and several unnatural azaphilones employing Me ou 110 J 21
gold(lll)-catalyzed cycloisomerization afalkynylbenzaldehydes Auls <—|

to 2-benzopyrylium salts and subsequent I(V)-mediated oxidation.

! ! i Figure 2. Proposed Mechanism for Formation 4/#'.
In addition to our studies, a number of synthetic efforts have been

reported toward the racemic synthesis of the azaphifomigis only

a single report regarding asymmetric control of the quaternary
center? Herein, we disclose an enantioselective approach to the
azaphilones employing copper-mediated asymmetric oxicfatibn

Table 1.

o, (CH,)sCH3 1.2 equiv. Cu(CHsCN),PFg,
N 2)eCH 1.4 equiv. Ligand
0
Me 1.6 equiv. DIEA, Oy, 24 h

Development of Copper-Mediated Asymmetric Oxidation
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Figure 1. Retrosynthetic Analysis. 2 18 CH,Cl, 78 50 51
o ) ) o ) ) 3 18  CHCl; —40 38 66
Our initial approach is outlined in Figure 1. Our previous studies  4c 18 CH,Cl, —40 24 20
indicated that £)-2 could be obtained by oxidation of 2-benzo- 5 18 CHxCl> —20 27 59
6 18 toluene/CHCI; (1:1) —40 35 81

pyrylium salt3 (Figure 1, inset) using-iodoxybenzoic acid (IBX)
and BuNI as catalys? However, thus far our efforts to achieve
asymmetric oxidation o8 to 2 have not been successful. Since
previous synthetf® and biosynthetic studié$ave demonstrated
that pyronoquinones such d@smay be viable precursors to the
azaphilones, we shifted our focus to biomimetic asymmetric
oxidation’ of the pyronoquinonet derived fromo-alkynylbenz-
aldehydeb.

We first evaluated the feasibility of preparidgas a substrate
for asymmetric oxidation. After NMR experiments indicating that
2-benzopyrylium salB could be deprotonated to afford pyrono-
quinone4 with diisopropylethylamine (DIEA), we recognized that
it should be possible to prepare pyronoquinohealirectly via
cycloisomerization of alkynylbenzaldehyB8¢Scheme 1). Treatment
of 5 with 5 mol % Au(OAc)?8in anhydrous CDGI(50 °C) led to
formation of pyronoquinond as the major tautomer, which was

Scheme 1. Preparation of a Pyronoquinone Substrate
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aConversion was determined B NMR analysis of2 and the keto
aldehyde6 (from hydrolysis of pyronoquinond). P Ligand 14 slightly
favored theS-enantiomer of. ¢ No DIEA was added.

confirmed by HMBC analysi& Pyronoquinonet was found to be
unstable and readily hydrolyzed to keto aldehgd®&lethyl ether

7 also smoothly underwent cycloisomerization to produce pyrono-
quinone8, while regioisomeB failed to undergo cycloisomerization.

A generalized mechanism (Figure 2) involves activationoef
alkynylbenzaldehyds by Au(lll) to afford metal ate comple%0,2
which may be converted to zwitteridrl after proton transfer from
the C6 hydroxyl to C4. IntermediatEl may afford the pyrono-
quinone4/4’ after subsequent bond rearrangement.

Regarding biomimetic oxidation, our initial question centered
on whether tyrosinase “mimic¥’based on Cu/@enzymes could
mediate oxo transfer to the “tyrosine-like” pyronoquinode
Recently, Stack has employed readily available bidentate, nitrogen
ligands to prepare such Cw/Oxidant system&2bTwo examples
shown in Table 1 include binuclear copper-0xX®, (bis-«-oxodi-
copper(lll)) complex12 and the copper-peroxoP( u-n%n?-
peroxodicopper(Il)) complet3. In initial experiments, we found
that both12 and 13 (X = PFK~) oxidized pyronoquinond to 2
(—78°C, CH,Cl,). We also observed that oxidation reactions were
cleaner with added DIEA. This result encouraged us to investigate
asymmetric oxidation of pyronoquinodeemploying chiral, non-

10.1021/ja052049g CCC: $30.25 © 2005 American Chemical Society
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Scheme 2. Copper-Mediated Enantioselective Oxidative
Dearomatization?

(CH2)eCH3 (CH,)6CH:
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a Me. b Me - 0
Me CHO » o > RO i
OH O oH 19 =
5 Ref. 2 2 R=H
(-1 R =CH3(CH,)sCO

aConditions: (a) 2.2 equiv of Cu(GEN)sPFs, 2.4 equiv of ()-
sparteine, DIEA, DMAP, @ CHyCl,, —78 to —10 °C; (b) aq. KHPQy/
KoHPO, buffer (pH 7.2), CHCN, room temperature, 98% ee, 84% yield,
two steps.

Table 2. Enantioselective Synthesis of Diverse Azaphilones?

R " R
R 22 equiv. Cu(CHyCN)PFs, P KHPOLKAHPO o R
Z 24 equiv. (-)-sparteine, O Z aquzeau; baﬁer‘ 4 A
> Meal —————— - Ve e}
CHO 1.6 equiv. DIEA, HO" N CH3CN, RT HO
o OoH o

2.4 equiv. DMAP, O, -10°C

HO.

Me'

entry substrate azaphilone vield” ()
O,
! » R=4( ) vel T} 71% (96%)
HO "
o LI o
2 2 R= 4L ) vel I} 64% (95%)
HO I 2
22 o N (CH2):08n
3 R = B~ ~_0Bn “ﬁom 68% (97%)
26
2 ° o, . N~ (CH2)4COE
4 R = 3o~ og M;Om . 72% (97%)
[e]
28 ° N
> R= % "“nus oINS 44%(97%)
=7 oc

aSee Supporting Information for further detaitdsolated yield for two
steps. Isolated yield for three steps.

racemic diamine ligands (Table 1). Use of pybb4 resulted in
11% ee at-78°C (entry 1). Ligand45, 16,'* and17 did not afford
any conversion. We were pleased to discover that thg £
complex generated from Cu(GEIN),PF; and (-)-sparteine 18)%12
reacted cleanly with pyronoquinodeand produced azaphilorie
in 51% ee (entry 2). Further optimization afford2avith 81% ee
employing toluene/CLCl, (1:1) as solvent (entry 6).

Due to the instability of pyronoquinond, we investigated
o-alkynylbenzaldehydb as an oxidation substrate. To our delight,
Cuw[(—)-sparteine]O,-mediated enantioselective oxidative de-
aromatizatio®® of 5 afforded the corresponding vinylogous acid
19(Scheme 2}* However, only up to 60% conversion was obtained
when 1.6 equiv of Ci(—)-sparteinejO, was employed. Further
optimization studies identified 4-(dimethylamino)pyridine (DMAP)
as an effective additivéto promote full conversion to vinylogous
acid 19 with 1.1 equiv of Cy[(—)-sparteinejO,. After aqueous
KH,POy/K,HPQ, buffer-mediated cycloisomerizatiéh2 was pro-
duced in 98% ee (84% yield, two steps). Use of Cu{CN),OTf
as a Cu(l) source reduced the ee only slightly (92%). Following
our previously reported procedutgye prepared-)-1,° which was
confirmed to beR by CD spectroscop¥, thereby assigning the
absolute configuration of<)-S-15183a.

The copper-mediated asymmetric oxidation-cycloisomerization
sequence was found to be compatible vaithlkynylbenzaldehydes
20 and 21 containing an enyne and an aromatic functionality, as
well as22 and23 bearing a benzyl ether and an ester substituent
to afford the corresponding azaphilor&s-27, respectively (entries
1-4, Table 2). In additionp-alkynylbenzaldehyd@8 featuring a
terminal NH-Boc substituent was also well-tolerated in this

methodology to produce the desired azaphilone, which was further

converted to tricyclic amino-azaphilor2® after Boc deprotection

and intramolecular amine addition (entry %Yhen o-alkynyl-
benzaldehydes derived from propargylic ethers were subjected to
copper-mediated oxidation, severe side reactions were detected,
likely due to the active propargylic functionality. An alkynyl-imine
from condensation 05 and butylamine was also investigated in
the copper-mediated oxidation and in initial studies showed low
enantioselectivity.

In conclusion, we have developed a highly enantioselective
approach for the biomimetic synthesis of the azaphilones involving
copper-mediated enantioselective oxidative dearomatization of
o-alkynylbenzaldehydes. Further studies, including asymmetric
oxidative dearomatization of other substrates, are currently in
progress and will be reported in due course.
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